MODERN APPROACHES TO KIDNEY REPLACEMENT THERAPY OF COVID-ASSOCIATED NEPHROPATHIES

Authors

  • Viktoriia Aleksieieva Kyiv City Center of Nephrology and Dialysis, Candidate of Medical Sciences, Head of the Department of Efferent (Extra corporeal) Treatment Methods

DOI:

https://doi.org/10.37321/nefrology.2022.30-31-04

Keywords:

COVID-19, COVID-associated nephropathy, cytokine storm, renal replacement therapy.

Abstract

Introduction. Kidney damage is one of the manifestations of coronavirus disease. Frequency of renal dysfunction in patients with COVID-19 is 15-29%.

Goal. To investigate and summarize information on current approaches to renal replacement therapy of COVID-associated nephropathy.

Materials and methods. Bibliographic – a theoretical analysis is carried out and a generalization of literature data is carried out, the actual content is analyzed.

Results and discussion. Possible mechanisms of COVID-associated nephropathy include dehydration, ischemia, direct cytopathic action of the virus due to exposure to ACE2 receptors, accumulation of proinflammatory circulating immune complexes – the so-called cytokine storm – and toxic effects of medications. Differentiation of renal dysfunction in patients with coronavirus disease into primary and secondary gives an opportunity to provide a theoretical basis for the development of recommendations for the management and prevention of this complication. Correction of renal dysfunction depends on its type: primary or secondary. Elimination and prevention of cytokine storm is an effective way of primary kidney dysfunction management; renal replacement therapy should be used in the case of secondary dysfunction.

Conclusions. Clinicians should consider renal dysfunction as a predictor of the adverse course of the disease. In primary dysfunction, rapid reduction of inflammatory manifestations at the initial stage of the disease and prevention of additional nephron damage are effective. In secondary dysfunction, renal replacement therapy should be used.

References

Сucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Bio-Med. 2020 Mar 19;91(1):157–60

Guan, Wei-jie, et al. “Clinical characteristics of coronavirus disease 2019 in China.” New England journal of medicine 382.18 (2020): 1708-1720.

Wang C., Horby P. W., Hayden F. G. et al. A novel coronavirus outbreak of global health concern // Lancet. – 2020. – Vol. 395 (10223). – P. 470-473. doi: 10.1016/S0140-6736(20)30185-9. Epub 2020 Jan 24. Erratum in: Lancet. 2020 Jan 29; PMID: 31986257; PMCID: PMC7135038.

Valizadeh, Rohollah, et al. “Coronavirusnephropathy; renal involvement in COVID-19.” J Renal Inj Prev 9.2 (2020): e18.

Mubarak, Muhammed, and Hamid Nasri. “COVID-19 nephropathy; an emerging condition caused by novel coronavirus infection.” Journal of Nephropathology 9.3 (2020).

Naicker, Saraladevi, et al. “The Novel Coronavirus 2019 epidemic and kidneys.” Kidney International 97.5 (2020): 824-828.

Ronco, Claudio, Thiago Reis, and Silvia De Rosa. “Coronavirus epidemic and extracorporeal therapies in intensive care: si vis pacem para bellum.” Blood purification 49.3 (2020): 255-258.

Abdalbary, Mohamed, and Hussein Sheashaa. “Acute kidney injury in patients with coronavirus disease 2019–how much do we know?.” Journal of The Egyptian Society of Nephrology and Transplantation 20.4 (2020): 204.

Naicker, Saraladevi, et al. “The Novel Coronavirus 2019 epidemic and kidneys.” Kidney International 97.5 (2020): 824-828.

Batlle, Daniel, et al. “Acute kidney injury in COVID-19: emerging evidence of a distinct pathophysiology.” Journal of the American Society of Nephrology (2020).

https://www.isicem.org/16/programme/Video_PresTop.asp?PresId=27400

Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol 2020; 16:308–310.

Valizadeh, Rohollah, et al. “Coronavirusnephropathy; renal involvement in COVID-19.” J Renal Inj Prev 9.2 (2020): e18.

Favalli E. G., Ingegnoli F., De Lucia O. et al. COVID-19 infection and rheumatoid arthritis: Faraway, so close! // Autoimmun. Rev. – 2020. – P. 102523. doi.org/10.1016/j.autrev.2020. 1 0 2 5 2 3 . h t t p s : / / w w w . s c i e n c e d i - r e c t . c o m / s c i e n c e / a r t i c l e / a b s / p i i /S1568997220300781?via%3Dihub

Carcillo J. A., Shakoory B. (2019) Cytokine storm and sepsis-induced multiple organ dysfunction syndrome. In: Cron R., Behrens E. (eds) Cytokine Storm Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-22094-5_27

Arunachalam P. S., Wimmers F., Mok C. K. P. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans // Science. – 2020. – № 369 (6508). – Р. 1210-1220. doi: 10.1126/science.abc6261. Epub 2020 Aug 11. PMID: 32788292; PMCID: PMC7665312. https://science.sciencemag.org/content/369/6508/1210.

Wright F. L., Vogler T. O., Moore E. E. et al. Fibrinolysis shutdown correlation with thromboembolic events in severe COVID-19 Infection // J. Am. Coll. Surg. – 2020. – Vol. 231, № 2. – Р. 193-203.e1. doi:10.1016/j.jamcollsurg.2020.05.007 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227511/

Ciceri F., Beretta L., Scandroglio A. M. et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis // Crit. Care Resusc. – 2020. – Vol. 22, № 2. – Р. 95-97. Epub ahead of print. PMID: 32294809. https://pubmed.ncbi.nlm.nih.gov/32294809/

Yasuda K., Nakanishi K., Tsutsui H. Interleukin-18 in Health and Disease // Int. J. Mol. Sci. – 2019. – Vol. 20, № 3. – Р. 649. Published 2019 Feb 2. doi:10.3390/ijms20030649.https://www.ncbi.nlm.nih. gov/pmc/articles/PMC6387150/

Wright F. L., Vogler T. O., Moore E. E. et al. Fibrinolysis shutdown correlation with thromboembolic events in severe COVID-19 Infection // J. Am. Coll. Surg. – 2020. – Vol. 231, № 2. – Р. 193-203.e1. doi:10.1016/j.jamcollsurg.2020.05.007 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227511/

Ferrara J. L., Abhyankar S., Gilliland D. G. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1 // Transplant. Proc. – 1993. – Vol. 25 (1 Pt 2). – Р. 1216-1217. https://pubmed.ncbi.nlm.nih.gov/8442093/

Stenken J. A., Poschenrieder A. J. Bioanalytical chemistry of cytokines – a review // Anal. Chim. Acta. – 2015. – № 853. – Р. 95-115. doi:10.1016/j. aca.2014.10.009. https://www. n c b i . n l m . n i h . g o v / p m c / a r t i c l e s /

PMC4717841/

Shimizu M. Clinical features of cytokine storm syndrome. In: Cron R., Behrens E. editors. Cytokine Storm Syndrome. Cham: Springer. – 2019. – Р. 31–42. doi: 10.1007/978-3-030-22094-5_3

Polushin Yu.S., Аkmalova R.V., Sokolov D.V., Bovkun I.V., Shlyk I.V., Parshin E.V., Gavrilova E.G., Lapin S.V., Tkachenko O.Yu. Changes in the levels of some cytokines when using blood purification in COVID-19 patients. Messenger of Anesthesiology and Resuscitation, 2021, Vol. 18, no. 2, P. 31-39. (In Russ.) DOI: 10.21292/2078-5658-2021-18-2-31-39

Villa, Gianluca, et al. “Blood purification therapy with a hemodiafilter featuring enhanced adsorptive properties for cytokine removal in patients presenting COVID-19: a pilot study.” Critical Care 24.1 (2020): 1-13.

Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol 2020; 16:308–310.

Rizo Topete MD, L. et al. “POS-049 SUCCESSFUL MULTI ORGAN SUPPORT THERAPY (MOST) IN COVID-19 PNEUMONIA: A CASE REPORT.” Kidney International Reports vol. 6,4 (2021): S22. doi:10.1016/j.ekir.2021.03.055.

Broman M, Hansson F, Vincent JL, Bodelsson M. Endotoxin and cytokine reducing properties of the oXiris membrane in patients with septic shock: a randomized crossover doubleblind study. PlosONE. 2019; https://doi.org/10.1371/journal.pone.0220444

Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med 2020; 46:854–887.

h t t p s : / / k d i g o . o r g / w p - c o n t e n t / u p -loads/2016/10/KDIGO-2012-AKI-Guideline-English.pdf

Nadim M.K., Forni L.G., Mehta R.L. et al. COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat. Rev. Nephrol., 2020, vol. 16, no. 12, pp. 747-764. doi: 10.1038/s41581-020-00356-5. Epub 2020 Oct 15. Erratum in: Nat. Rev. Nephrol., 2020 Nov 2; PMID: 33060844; PMCID: PMC7561246.

Abdalbary, Mohamed, and Hussein Sheashaa. “Acute kidney injury in patients with coronavirus disease 2019–how much do we know?.” Journal of The Egyptian Society of Nephrology and Transplantation 20.4 (2020): 204.

Ronco, Claudio, Thiago Reis, and Silvia De Rosa. “Coronavirus epidemic and extracorporeal therapies in intensive care: si vis pacem para bellum.” Blood purification 49.3 (2020): 255-258.

Колесник М., Степанова Н., Красюк Е., Ліксунова Л., Семенюк Р., Костиненко Т., 2021. УДК: 616.61-008.6-036.11-084-07-08 Профілактика, діагностика та лікування гострого пошкодження нирок: Адаптовані клінічні рекомендації Української асоціації нефрологів і фахівців з трансплантації нирки

Abdalbary, Mohamed, and Hussein Sheashaa. “Acute kidney injury in patients with coronavirus disease 2019–how much do we know?.” Journal of The Egyptian Society of Nephrology and Transplantation 20.4 (2020): 204.

Wang AY, Bellomo R. Renal replacement therapy in the ICU: intermittent hemodialysis, sustained low-efficiency dialysis or continuous renal replacement therapy? Curr Opin Crit Care 2018; 24:437–442.

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395:507–513.

Klok FA, Kruip M, van der Meer NJM, Arbous MS, Gommers D, Kant KM et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res 2020; 191:148–150.

Ugurov, Petar, et al. “Early initiation of extracorporeal blood purification using the AN69ST (oXiris®) hemofilter as a treatment modality for COVID-19 patients: a single-centre case series.” Brazilian Journal of Cardiovascular Surgery (2021).

Zhang, Hongtao, et al. “The absorbing filter Oxiris in severe coronavirus disease 2019 patients: A case series.” Artificial Organs 44.12 (2020): 1296-1302.

El Shamy O, Sharma S, Winston J, Uribarri J. Peritoneal dialysis during the coronavirus 2019 (COVID-19) pandemic: acute inpatient and maintenance outpatient experiences. Kidney Med 2020.

Chionh CY, Soni SS, Finkelstein FO, Ronco C, Cruz DN. Use of peritoneal dialysis in AKI: a systematic review. Clin J Am Soc Nephrol 2013; 8:1649–1660.

Almeida CP, Ponce D, de Marchi AC, Balbi AL. Effect of peritoneal dialysis on respiratory mechanics in acute kidney injury patients. Perit Dial Int 2014; 34:544–549.

Akalin, Enver, et al. “Covid-19 and kidney transplantation.”

New England Journal of Medicine 382.25 (2020): 2475-2477.

Published

2023-01-08

How to Cite

Aleksieieva В. (2023). MODERN APPROACHES TO KIDNEY REPLACEMENT THERAPY OF COVID-ASSOCIATED NEPHROPATHIES. Actual Problems of Nephrology, (30-31), 37–44. https://doi.org/10.37321/nefrology.2022.30-31-04